Analysis of Oxygen Transfer Performance on Sub-surface Aeration Systems

نویسنده

  • Kossay K. Al-Ahmady
چکیده

The efficiency of oxygen transfer depends on many factors including the type, size and shape of diffusers and the tank geometry. In this paper, the effect of the depth of water in the tank and, the extension of coverage area of diffusers on each of oxygen transfer capacity (OC), efficiency (E) and, on a percentage of oxygen absorption (delta) is tested. Experimental procedure is adopted to evaluate the effect of these parameters. The results of the study showed that, both the depth of water and the extent of coverage area of diffuser had a significant effect on the tested parameters. The values of oxygen transfer capacity (OC) and efficiency (E) ranged from 18 to 170 grO2/m3. hr and from 2 to 17 grO2/m3air, respectively; depending on the depth of water in tank and the ratio of diffusers coverage area. The percentage of oxygen absorption ranged from 0.45-5.4% depending on the testing conditions. Specific mathematical models to describe the effect of each parameter were also derived. The exponential form of equation proved to be efficient in describing the effect of a depth water on oxygen transfer capacity (OC) whereas; the linear form of equation was good enough in representing the effect of the other parameters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of nanobubble aeration in oxygen transfer efficiency and sludge production in wastewater biological treatment

Low efficiency of conventional aeration techniques and the excessive production and disposal of sludge are great concerns in biological wastewater treatment systems. The present study aimed to evaluate the active sludge method using batch reactors under continuous operation to determine the efficiency of aeration and sludge production through microbubble and nanobubble aeration. The results ind...

متن کامل

Effect of Electrolyte Conductivity and Aeration on Performance of Sediment Microbial Fuel Cell

Sediment microbial fuel cells (SMFCs) are a promising technology for a viable source of energy. This technology is faced with many challenges, such as limited mass transfer and low electricity generation. The aim of this research was to investigate the effect of electrolyte conductivity and aeration effect on power generation from SMFCs. Electrical conductivity was adjusted at 6different levels...

متن کامل

Enhancement of oxygen transfer efficiency in diffused aeration systems using liquid-film-forming apparatus.

Surface transfer and bubble transfer both contribute significantly to oxygen transfer in a diffused aeration system. In the present study, liquid-film-forming apparatus is successfully developed on a laboratory scale to improve considerably the surface transfer via the unique liquid film transfer technique. The experimental results show that the volumetric mass transfer coefficient for liquid-f...

متن کامل

Rectangular surface aerators.

Aeration experiments were conducted in two rectangular surface aeration tanks of L/B ratios 1.5 and 2 along with a square tank (L/B=1) to study their relative performance due to shape on oxygen transfer process while re-aerating the same volume of water such that the cross-sectional area of all the three tanks is the same. An identical rotor with six flat blades was used in all the three tanks....

متن کامل

Aeration and air–water mass transfer on stepped chutes with embankment dam slopes

Stepped spillwayflows are characterised by significant free-surface aeration downstream of the inception point of air entrainment. The stepped design is advantageous for applications which require large energy dissipation and strong flow aeration. While the energy dissipation rate for embankment stepped spillways was studied previously, the optimum design for aeration and air–water mass transfe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2006